Software Flumen Flush Fluviz Simp Support |
Users
The National Institute of Water and Atmospheric Research (NIWA) in New Zealand has been using Hydro2de for the last 10 years. After trialling it on of a wide range of gravel-bedded braided river reaches (mean flows of 3.4 to 100 m3/s) and a large sinuous single thread river (mean flow 291 m3/s), NIWA found Hydro2de to be robust software giving good results. NIWA has since used Hydro2de to predict depths and velocities for a wide range of flows in braided gravel-bed rivers. Much of his work was to predict changes in physical habitat using instream flow incremental flow (IFIM) principles for a wide range of species and life stages from benthic invertebrates to salmonid species and including the feeding habitat of riverbed nesting birds. NIWA has also used Hydro2de to predict flood plain inundation on the river with the highest peak flood flows in New Zealand (Buller River - peak flow 12,500 m3/s). Currently (austral winter 2005) NIWA is carrying out a flood plain inundation study on the largest river in New Zealand (Clutha River mean flow 614 m3/s). Institute of Forest and Mountain Risk Engineering, Univ. of Natural Resources and Applied Life Sciences, Vienna, Austria Recalculation of a
flood event
in summer 2002 in an Austrian torrent Modelling of a
rough-channel pool
pass in order to faciliate fish migration in an alpine
torrent
by Markus HOLUB & Andreas PICHLER Andrew Nicholas, PhD. Department of Geography, Exeter University, UK. "Staff and postgraduate research students within the Geography Department’s Hydrology & Earth Surface Processes Research Group at Exeter University are using Hydro2de to model flow hydraulics in a wide range of fluvial environments including lowland floodplains and high gradient braided rivers. Hydro2de has proven to be ideal for use in such applications owing to its accuracy, robust performance and ability to simulate complex flow patterns in situations involving extremely complicated river bed and floodplain topography." Lowland floodplainsSlide 1 (75k) shows predicted flow depths on the floodplain of the River Culm, Devon, at three discharges. Slide 2 & 3 show combined flow depth and velocity vector predictions for small areas of the River Culm floodplain and illustrate the ability of hydro2de to simulate flow patterns in complex environments. Slide 2 (100k) shows flow across a point bar inside a meander bend. Slide 3 (87k) shows a flow recirculation zone within an abandoned channel.High gradient braided riverSlide 4 (89k) shows patterns of predicted unit discharge for the braided Avoca River, New Zealand, at three discharges. These predictions have been validated against field measurements of flow depth and velocity, and against inundation extent maps derived using GPS surveys. The high degree of correspondence between Hydro2de output and field data has also allowed us to use these predictions as the input to numerical models of suspended sediment transport and deposition.Frank Ritzert, PhD, and Mark Musall, Inst. of Water Resources Management, Hydraulic & Rural Engineering, University of Karlsruhe, Germany (see also website Dr.-Ing. F. Ritzert) "In the downstream
section of
the barrage Iffezheim at the River Rhine massive erosion
problems
exist.
Artificial grain feeding is used to prevent severe erosion
of the river
bed. Nevertheless, the groynes in this river section are
eroded and
have
to be reconstructed from time to time, what causes very high
costs. Rob Connell, Hazard Engineer, CH Flood Modelling Services, Christchurch NZ "After 15 years of
modelling flooding
on the Canterbury Plains of New Zealand I have found Hydro2de
gives a big leap forward in the solution of these problems.
The flood
plains
are complicated and I was not confident about the results
from the
existing
1D models I was using in many areas of the flood plains and
stopbank
design
on our river control schemes. We give out 100's of flood
assessments
every
year to people purchasing farms or building houses
(requiring floor
levels
for construction) on the flood plain. The results from Hydro2de
will greatly improve the accuracy and quality of the
information we
provide." Waihao Flood Plains, Canterbury, NZThe modelled area covers approx. 50 sqkm of the Waihao river flood plain (New Zealand). Hydro2de has been used to estimate the flood depths in an area of 15 sqkm near the shore. The size of the grid cells is 20x20m. In his thesis Rob Connell has evaluated the different error sources and compared the modelling results with observations made by the flood plain residents. More details can be found at Environment Canterbury.(c) 2021 fluvial.ch |